
Lecture-28

Computer-Aided Software
Engineering

1

Computer-Aided

Software Engineering

“Automating the process ...”

2

Lecture Objectives

To understand the role of automation in
the software engineering process

To describe the different types of CASE
tools

To discuss the importance of integration
among the different CASE tools

3

What is CASE?

CAD/CAM - Computer-aided design &
manufacturing

Automated support for software
engineering process

Provides engineer with ability to automate
manual activities and improve engineering
insight and quality

Can be single tool or complete
environment

4

Building Blocks for

CASE

5

Environment Architecture

Portability Services

Operating System

Hardware Platform

CASE Tools

Integration Framework

Taxonomy of CASE

Tools

Business Systems Planning

Information Engineering Tools

Process Modeling and Management Tools

Project Management

Project Planning Tools

Risk Analysis Tools

Project Management Tools

Requirements Tracing Tools

Metrics and Management Tools
6

Taxonomy of CASE

Tools (Continued)

Support Tools
Documentation Tools

System Software Tools

Quality Assurance Tools

Database Management Tools

Software Configuration Management Tools

Analysis and Design Tools
PRO/SIM Tools

Interface Design and Development Tools

Prototyping Tools

7

Taxonomy of CASE

Tools (Continued)

Programming Tools

Integration and Testing Tools

Static Analysis Tools

Dynamic Analysis Tools

Test Management Tools

Client/Server Testing Tools

Maintenance Tools

Reengineering Tools

8

Integration Options

Individual Tool (Point Solution)

Data Exchange

Tool Bridges & Partnerships

Consortium & Standards

Single Source

IPSE

9

Integration Options

Diagram

10

Point Solution Data Exchange Tool Bridges &

Partnerships

Consortium &

Standards
Single Source IPSE

Integrated CASE (I-

CASE)

Integration of a variety of tools and
information that enables closure of
communication among tools, between
people and across the software process

Combination of CASE tools in an
environment where interface mechanisms
are standardised

11

I-CASE Features

All tools sharing SE information

Change of one item tracked to other items

Provide version control and configuration
management

Direct access to any tool

Automated support for integration of tools
& data into standard WBS

12

I-CASE Features

(Continued)

Consistent look & feel for each tool

Support communication among engineers

Collect management & technical metrics

13

Benefits of I-CASE

Smooth transfer of information from a
tool to another and one SE step to the
next

Reduction in effort to perform umbrella
activities such as SCM, SQA and document
production

increase in project control

Improved coordination among staff
members in a large software project 14

Integration Framework

Diagram

15

User interface layer

- interface tool kit

- presentation protocol

Tools management services

Object management layer

- integration services

- configuration management services

Shared repository layer

- CASE database

- access control functions

CASE

tool Tools layer

Integration Framework

User interface layer

incorporates standardised interface toolkit
with common presentation protocol

human-computer interface, display objects,
guidelines for same look & feel

Tools layer

tools management - control behaviour of tools

coordination of tasks, e.g. multitasking

16

Integration Framework

(Continued)

Object management layer

configuration management functions

integration services - standard modules that
couple tools with repository

Shared repository layer

CASE database

access control functions - enable object
management layer interact with database

17

Process Integration

18

CASE

Tools Activities

Results

Users

Process

Interpreter

Process

model

advises
calls

support
carry out

generate

CASE Workbenches

Set of tools which supports a particular
phase of the software process e.g. design

Advantage - tools can work together to
provide more comprehensive support

Common services can be implemented and
called by all the tools

Integration possible through shared files,
shared repository, or shared data structures

19

Programming

workbenches

Language compiler

Structured editor

Linker

Loader

Cross-referencer

Prettyprinter

Static & Dynamic analyser

Interactive debugger
20

Analysis and Design

Workbenches

Diagram editors

Design analysis and checking tools

Repository

Repository query language

Report definition and generation tools

Forms definition

Import/export facilities

Code generators

 21

Testing workbenches

Test manager

Test data generator

Oracle - generates predicted results

File comparator

Report generator

Dynamic analyser

Simulator

22

Examples of CASE Tools

With Class - object-oriented design and
code generation

Eiffelbench - object-oriented programming
and debugging

Oracle Designer/2000 - integrated CASE
environment

23

With Class

Design objects - identifying attributes and
operations

Specifying relationships

Diagramming for various methodologies

Code generation for various languages

24

Eiffelbench

Based on Eiffel language (an object-oriented
language)

For development and debugging of program

Consists of tools such as:

Project Tool

System Tool

Class Tool

Feature Tool

Object Tool
25

